Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract Research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2023-021, 112 Pages, 2024/02

JAEA-Review-2023-021.pdf:7.1MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted from FY2018 to FY2021 (this contract was extended to FY2021). The present study aims to understand the basic properties (size, chemical composition, isotopic composition - including concentration of $$alpha$$-emitters, electrostatic properties, and optical properties, etc.) of fine particles composed of silicate with insoluble properties which contain regions of highly concentrated radioactive cesium (Cs) released to the environment by the accident at the Fukushima Daiichi Nuclear Power Station of TEPCO in 2011 March.

Journal Articles

Occurrence of radioactive cesium-rich micro-particles (CsMPs) in a school building located 2.8 km south-west of the Fukushima Daiichi Nuclear Power Plant

Fueda, Kazuki*; Komiya, Tatsuki*; Minomo, Kenta*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Shiotsu, Hiroyuki; Onuki, Toshihiko*; Grambow, B.*; Law, G. T. W.*; et al.

Chemosphere, 328, p.138566_1 - 138566_12, 2023/07

 Times Cited Count:1 Percentile:52.26(Environmental Sciences)

Journal Articles

Origin of Cs-bearing silicate glass microparticles observed during Fukushima accident and recommendations on nuclear safety

Hidaka, Akihide

Journal of Radioanalytical and Nuclear Chemistry, 332, p.1607 - 1623, 2023/03

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

no abstracts in English

Journal Articles

The Formation mechanism of radiocesium-bearing microparticles derived from the Fukushima Daiichi Nuclear Power Plant using electron microscopy

Hagiwara, Hiroki; Kondo, Keietsu; Hidaka, Akihide

Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5905 - 5914, 2022/12

 Times Cited Count:3 Percentile:53.91(Chemistry, Analytical)

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-015, 119 Pages, 2022/09

JAEA-Review-2022-015.pdf:6.62MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood.

Journal Articles

Accumulation mechanisms of radiocaesium within lichen thallus tissues determined by means of ${it in situ}$ microscale localisation observation

Dohi, Terumi; Iijima, Kazuki; Machida, Masahiko; Suno, Hiroya*; Omura, Yoshihito*; Fujiwara, Kenso; Kimura, Shigeru*; Kanno, Futoshi*

PLOS ONE (Internet), 17(7), p.e0271035_1 - e0271035_21, 2022/07

 Times Cited Count:1 Percentile:14.8(Multidisciplinary Sciences)

Journal Articles

Identification of carbon in glassy cesium-bearing microparticles using electron microscopy and formation mechanisms of the microparticles

Hidaka, Akihide

Nuclear Technology, 208(2), p.318 - 334, 2022/02

 Times Cited Count:6 Percentile:65.59(Nuclear Science & Technology)

The author previously proposed that the Cs bearing microparticle (Type A) may have been formed by melting and atomization of glass fibers (GF) of the HEPA filter in the SGTS due to flame and blast during the hydrogen explosion in Unit 3. If this hypothesis is correct, the Type A could contain or accompany carbon (C), that ignites spontaneously above 623 K, because of the limited time to be heated up, inclusion of C in the binder applied on the GF surface and closely located charcoal filter. As the previous studies did not focus on C, the present analyses were performed with EPMA whether the Type A contains C. The results showed that the Type A contained C originating from the binder, and non-spherical particles accompanied by the Type A and the film surrounding the Type A contained more C, which is thought to originate from the charcoal filter. These results cannot be explained by the other mechanisms proposed so far, and can be explained consistently by the author proposed hypothesis.

Journal Articles

Characterization of radiocesium-bearing microparticles with different morphologies in soil around the Fukushima Daiichi Nuclear Power Plant

Hagiwara, Hiroki; Funaki, Hironori; Shiribiki, Natsu*; Kanno, Marina*; Sanada, Yukihisa

Journal of Radioanalytical and Nuclear Chemistry, 331(1), p.415 - 426, 2022/01

 Times Cited Count:7 Percentile:65.59(Chemistry, Analytical)

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2021-023, 49 Pages, 2021/12

JAEA-Review-2021-023.pdf:2.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to develop a novel method to reduce the volume of contaminated soil caused by an accident at the Fukushima Daiichi Nuclear Power Station. The heavy liquid separation method, which was optimized in the previous year, was applied to nine soils collected in Fukushima Prefecture.

Journal Articles

Microparticles with diverse sizes and morphologies from mechanical and laser cutting of fuel debris simulants and geopolymer as a covering material

Zhou, Q.*; Saito, Takumi*; Suzuki, Seiya; Yano, Kimihiko; Suzuki, Shunichi*

Journal of Nuclear Science and Technology, 58(4), p.461 - 472, 2021/04

 Times Cited Count:6 Percentile:65.59(Nuclear Science & Technology)

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2020-033, 84 Pages, 2021/01

JAEA-Review-2020-033.pdf:4.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted in FY2019.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-031, 69 Pages, 2021/01

JAEA-Review-2020-031.pdf:4.22MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted in FY2019.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2020-037, 53 Pages, 2020/12

JAEA-Review-2020-037.pdf:3.46MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil" conducted in FY2019.

Journal Articles

Numerical simulation of microparticles motion in two-phase bubbly flow

Yoshida, Hiroyuki; Uesawa, Shinichiro

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2019-041, 71 Pages, 2020/03

JAEA-Review-2019-041.pdf:3.38MB

JAEA/CLADS, has been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") since FY2018. The Project aims at solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence has been collected from all over the world, and basic research and human resource development have been promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles". In order to establish the decommissioning procedures (recovery of the melted fuels, decontamination inside the reactors, ensuring the safety of the workers, etc.) of the Fukushima Daiichi Nuclear Power Station, radioactive microparticles released by the accident are an important information source for clarifying what had happened inside the reactors in the course of the accident. The purpose of the present study is to obtain detailed knowledge on the basic properties (particle size, composition, electrical/optical properties, etc.) of the radioactive microparticles, as well as to further elucidate the various properties of the radioactive microparticles including the quantitative evaluation of alpha-ray-emitters, through the Japan-UK synergetic research. Thus, we are conducting research and development that will contribute to the comprehensive works towards the risk reduction in the "decommissioning" plan.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-034, 59 Pages, 2020/03

JAEA-Review-2019-034.pdf:3.15MB

JAEA/CLADS, conducted the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aimed to contribute to solving problems in the field of nuclear energy represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development was promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barriers of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification". Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood. In this study, the mechanism of microparticle production by laser processing is investigated from fundamentals. Also, we develop a laser on-line principle device to examine the nuclides present in the microparticles that are produced, based on the measurement of the particle size distribution by collecting the microparticles using aerodynamic lenses.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2019-023, 33 Pages, 2020/01

JAEA-Review-2019-023.pdf:1.97MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the 'Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil'. After the accident of the Fukushima Daiichi Nuclear Power Station, radioactive cesium has been heterogeneously distributed in surface soil due to the existence of radioactive microparticles and clay minerals. Therefore, the selective removal of these microparticles will lead to the volume reduction of contaminated soil. The present study examines methods for selectively removing radioactive microparticles from soil. Also, in order to reduce the volume of contaminated soil, we search a possibility to practically apply the separation method that uses the difference in specific gravity of particles (heavy liquid separation method).

Journal Articles

Extraction mechanism of lanthanide ions into silica-based microparticles studied by single microparticle manipulation and microspectroscopy

Otaka, Toshiki*; Sato, Tatsumi*; Ono, Shimpei; Nagoshi, Kohei; Abe, Ryoji*; Arai, Tsuyoshi*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Nakatani, Kiyoharu*

Analytical Sciences, 35(10), p.1129 - 1133, 2019/10

 Times Cited Count:9 Percentile:40.49(Chemistry, Analytical)

Journal Articles

Inner structure and inclusions in radiocesium-bearing microparticles emitted in the Fukushima Daiichi Nuclear Power Plant accident

Okumura, Taiga*; Yamaguchi, Noriko*; Dohi, Terumi; Iijima, Kazuki; Kogure, Toshihiro*

Microscopy, 68(3), p.234 - 242, 2019/06

 Times Cited Count:11 Percentile:68.41(Microscopy)

Radiocesium-bearing microparticles (CsMPs), consisting substantially of silicate glass, were released to the environment during the Fukushima nuclear accident in March 2011. We investigated a total of nine CsMPs using transmission electron microscopy (TEM) and inferred the atmosphere in the reactors during the accident. From elemental mapping using energy-dispersive X-ray spectrometry, Fe and Zn showing radial inhomogeneities were found in the CsMPs, in addition to the Cs that had been previously reported. Four of the CsMPs included submicron crystals, which were identified as chromite, franklinite, acanthite, molybdenite, and hessite. The chromium-containing spinels, chromite and franklinite, indicated the presence of ferrous iron (Fe$$^{2+}$$), suggesting that the inside of the reactors was reductive to some extent. Electron energy-loss spectroscopy also confirmed that the CsMPs did not contain boron, and therefore the atmosphere in which they were formed might be boron-free.

JAEA Reports

Separation of radiocaesium-bearing micro particle from environmental samples; Application to litter samples

Tagomori, Hisaya; Dohi, Terumi; Ishii, Yasuo; Kanaizuka, Seiichi*; Fujiwara, Kenso; Iijima, Kazuki

JAEA-Technology 2019-001, 37 Pages, 2019/03

JAEA-Technology-2019-001.pdf:26.85MB

An efficient methodology for separating the radiocaesium-bearing micro particles (CsMPs) released by the TEPCO's Fukushima Dai-ichi Nuclear Power Station accident is required to investigate their spatial distribution and physicochemical properties. In this report we developed an efficiency separation method for CsMP from litters since the radiocaesium in litter may affect the radiocaesium cycling in forest ecosystem. One CsMP separation from litter containing lots of soil particles was attained within three days using electron microscopic analysis with digestion treatment of organic matter. This methodology is expected as CsMPs efficient separation method for not only forest floor litter but also barks and leaves of living tree, and other organic materials in the forested environment.

31 (Records 1-20 displayed on this page)